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Abstract Simulation of the temperature distribution

during the Pulse Electrochemical Machining (PECM)

process provides information on system design and

guidelines for practical use. The pulses that are applied to

the PECM system have to be described on a time scale that

can be orders of magnitude smaller than the time scale on

which the thermal effects evolve. If the full detail of the

applied pulses has to be taken into account, the time

accurate calculation of the temperature distribution in

PECM can become a computationally very expensive

procedure. A new approach is introduced by time averag-

ing the heat sources of the system. Performing this, the

time steps used during the calculations are no longer dic-

tated by the pulse characteristics. Using this approach,

computationally very cheap, yet satisfactory results can be

obtained. In this part of the work, the hybrid calculation

and the Quasi Steady State ShortCut (QSSSC) are intro-

duced. The hybrid calculation is a method, by which

averaged and pulsed heat sources are combined in one

calculation. The QSSSC is a method for quickly calculating

the Quasi Steady State (QSS) in numerical calculations

with time stepping. Analytical solutions of simplified cases

are studied to provide useful insights into the more general

case. It is shown that the averaging technique adopted in

this work does not always deliver perfect results. However,

using a technique of shifting the pulses in time, the results

can become very satisfactory yet still extremely cheap. The

more general case, which will be solved numerically, can

be found in part II [Smets et al. J Appl Electrochem

(Submitted)] of this work.
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Notation

A Electrode surface (m2)

Bi Biot Number ð¼ hH
k Þ

Cp Heat capacity (J kg�1 K�1)

Fo Fourier Number ð¼ a0t
H2Þ

h Heat transfer coefficient (W m�2 K�1)

H Characteristic size electrode (m)

j Current density (A m�2)

k Thermal conductivity (W m�1 K�1)

L Electrode length (m)

Pdl Heat density produced in the double layer

(W m�2)

Pbulk Heat density produced in the bulk (W m�3)

r General location vector (m)

St Strouhal Number ð¼ L
vTÞ

t Time (s)

t0 Time (s)

k Time (s)

T Pulse period (s)

v Scalar velocity (m s�1)

v Velocity vector (m s�1)

V Volume (m3)

x Distance (m)

a Duty cycle

a0 Thermal diffusivity (m2 s�1)

g Overpotential (V)

h Relative temperature (K)

h0 Normalized temperature (K)

h Averaged temperature (K)
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~h Temperature ripple (K)

hdecay Decaying temperature (K)

H Temperature (K)

Hinit Initial temperature (K)

H1 Reference temperature (K)

H� Steady state temperature (K)

k̂n Transcendental coefficients

q Density (kg m�3)

r Electrical conductivity (S m�1)

s Time constant (s)

w Pulse delay (s)

1 Introduction

Electrochemical Machining (ECM) is a manufacturing

process based on the controlled anodic dissolution of a

metal at large current densities (in the region of 1 A mm �2).

An electrolyte is used to carry away produced heat, among

other reaction products.

Despite its advantages, some difficulties still trouble the

application of ECM. One important issue is the lack of

quantitative simulation software to predict the tool shape

and machining parameters necessary to produce a given

work-piece profile [2–4]. The most complete model needs

to deal with the effects of the fluid flow, gas evolution, heat

generation, the electrochemical processes at the electrodes,

the transport of the species involved and all this while the

electrode shape changes. The work reported here makes a

contribution in incorporating heat generation in the model

and calculating the temperature distributions.

Pulse Electrochemical Machining (PECM) involves the

application of current or voltage pulses. In this work, only

current pulses will be considered. This does not compro-

mise the generality, since voltage and current are closely

related. One wishes to apply pulsed current for reasons of

accuracy and surface quality [4–7]. The issue of heating of

the electrolyte is of primary importance for the determi-

nation of the limiting conditions in ECM [6–10].

Steady State (SS) temperature distribution calculations

have been performed by Clark and McGeough [9], Loutrel

and Cook [10] and Kozak et al. [8]. Time accurate calcu-

lations of temperature distribution during PECM have

already been performed by Kozak [5, 6], where the pulses

are considered to be independent of each other and thus no

accumulation of heat over multiple periods is encountered.

Cases where there was accumulation of heat in the system

during multiple pulses have been treated in previous work

of the authors [11]. It was shown that, in order to determine

in advance whether the heat produced during multiple

pulses is going to accumulate or not, the time scales present

in the system have to be studied.

To simulate electrochemical processes with current

pulses, one has to perform calculations with boundary

conditions that vary in time. By applying a time stepping

algorithm, all the variable distributions are calculated in

time. The applied pulses have to be described on a time

scale that can be orders of magnitude smaller than the time

scale on which the thermal effects evolve. This means that

a lot of time steps would have to be calculated to perform a

satisfactory thermal simulation, which would be a com-

putationally very expensive procedure. The aim of this

paper was to find a cheaper approach that would still

provide adequate predictions.

By averaging the heat production in the system, it is

possible to calculate temperature evolutions with time steps

that are not dictated by the time scale of the pulses. It also

provides the possibility of calculating a SS. However, plain

averaging is inadequate in the system under consideration,

because of the very broad spectrum of possible time scales

present (see also [11]). While averaging might be necessary

to handle the largest time scales, the smaller time scales

may still be very important relative to the pulse period.

Plain averaging would eliminate all the small time scale

effects, which would make it impossible to perform accu-

rate simulations. The hybrid calculation and the Quasi

Steady State ShortCut (QSSSC) are introduced in this work

as a solution to this problem. The hybrid calculation is a

method where initially averaged heat sources are applied,

and at the time of interest, pulsed heat sources are applied.

The QSSSC consists of using the averaged SS as a starting

state, and applying pulses afterwards. It is shown that

delaying the start of the pulse on-time, with a certain value

w, influences the accuracy of the approximate methods.

Analytical formulae for w are presented in this work. Also,

a function E is defined to quantify how well the QSS is

approximated by using the QSSSC.

2 Mathematical model

The temperature distribution in the system is calculated

using a convection–diffusion equation with heat sources:

qCp
oH
ot
þ qCpv � rH ¼ r � krH

� �
þ Pbulk ð1Þ

Joule heating in the bulk of both the electrolyte and the

electrodes is considered, where

Pbulk ¼
j2

r
ð2Þ

Heat dissipation in the double layer, where [10]

Pdl ¼ gj ð3Þ
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is also taken into account. Pdl is imposed as a heat flux at

the electrode surfaces that are the boundaries of two

domains: the electrodes and the electrolyte. The electrodes

are cooled by convection. The boundaries of the electrodes,

which are not contiguous to the electrolyte, are considered

thermal insulators. This choice is justified by the fact that

essentially all of the heat generated in the system must be

carried away by the electrolyte [10].

3 Time averaging

Strongly time dependent pulsating boundary conditions and

bulk sources require simulations using small timesteps.

However, it would be more convenient to apply constant

boundary conditions and bulk sources, such that the time-

steps would not be dictated by the time scale of the pulses,

and that SS calculations would be possible. One way to

achieve this, is by averaging the boundary conditions and

bulk sources in time.

A time averaging operator h�i can be defined as

uðtÞh i ¼ 1

T

ZtþC

t�TþC

uðkÞdk ð4Þ

where averaging is performed over one period T, and where

C provides the freedom of placing the integration interval

around t in an arbitrary way. The averaged quantity is

undefined in the first T � C and the last C of the time

interval under consideration, which will be neglected. The

average heat production in the double layer can be

calculated easily from the heat production during the on-

time of the pulse Pdl;onðrÞ; as

Pdlðr; tÞh i ¼ aPdl;onðrÞ ð5Þ

Averaging the bulk heat production in time gives

Pbulkðr; tÞh i ¼ aPbulk;onðrÞ ð6Þ

with Pbulk;onðrÞ the bulk heat production during the on-time

of the pulse.

4 Averaging analytical solutions of simplified problems

In order to be able to justify the concept of averaging,

simplified models are analyzed. Interesting conclusions

will be drawn here which will be extrapolated to the more

general case that will be solved numerically. Two sub-

systems are considered: conduction in the electrode, and

convection in the electrolyte.

4.1 Conduction in the electrode

One electrode is considered in this system. Heat density

Pdl(t) will be produced at the contact surface with the

electrolyte. Heat production in the electrode will be

neglected, because of the typically very high electrical

conductivity of the metal electrodes and hence the very low

heat production. The electrode is cooled by convection.

The thermal behaviour of the electrode is studied for a

simplified case, and a more general case in the following

sections.

4.1.1 Lumped capacity solution

If the assumption is valid that the electrode is always at a

uniform temperature HðtÞ; a lumped capacity solution can

be used. This assumption is valid if the Biot number [12] is

much smaller than one,

Bi ¼ hH

k
� 1 ð7Þ

for which H = V/A is taken. This case of the lumped

capacity solution will be given as a step to the more general

case, which is treated later in Sect. 4.1.2.

Part of the produced heat Pdl(t) will be removed by the

electrolyte, and the other part will heat up the electrode.

The following equation applies,

hAðHðtÞ �H1Þ þ qCpV
dHðtÞ

dt
¼ PdlðtÞA ð8Þ

which can be rewritten as

hAðHðtÞ �H�ðtÞÞ þ qCpV
dHðtÞ

dt
¼ 0 ð9Þ

with H�ðtÞ ¼ PdlðtÞ=hþH1: This shows that the system,

in which there is convective cooling into a medium at

temperature H1 with a heat transfer coefficient h and

simultaneous heating Pdl(t) at the interface, is actually

equivalent to the same system being heated by convection

by a medium at temperature H�ðtÞ: The latter situation will

be considered in the rest of this work for easier

formulation.

From the absolute temperature H the relative tempera-

ture h can be derived, using

hðtÞ ¼ HðtÞ �H1 ð10Þ

Using the initial condition Hð0Þ �H1 ¼ hinit; the

solution of Eq. 9, for Pdl(t) = Pdl constant, is

hðtÞ ¼ h� � ðh� � hinitÞe�
t
s ð11Þ
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with time constant s = qCp H/h, SS temperature h* = Pdl/

h, and initial temperature hinit.

If Pdl(t) is a pulse train in time, and alternates between a

certain value Pdl,on and zero, h(t) will be a chaining of

exponential courses (see Fig. 1a). The boundary condition

is then defined in time as

h�ðtÞ ¼
0 for t0\0

h� for iT � t0\iT þ aT ; on-time;
0 for iT þ aT � t0\ðiþ 1ÞT ; off-time;

8
<

:

ð12Þ

with i = 0, 1, 2,... the number of the period. To provide a

degree of freedom which will be exploited later, the time t0,
which lags w to t, is introduced

t0 ¼ t � w ð13Þ

The solution of Eq. 9 with boundary condition 12 and

initial condition hinit = 0 is the following recursive

formulation,

hðtÞ ¼
0 for t0 � 0;

h� � ðh� � hðiTÞÞe�ðt0�iTÞ=s on-time;
hðiT þ aTÞe�ðt0�ðiTþaTÞÞ=s off-time;

8
<

:
ð14Þ

where the start temperature of one piece is the end

temperature of the previous piece. Fortunately, a more

convenient general formulation can be found,

hðtÞ
h�
¼

0; for t0 � 0;
1� eT=s�eaT=s

eT=s�1
e�ðt

0�iTÞ=s � eaT=s�1
eT=s�1

e�t0=s; on-time;
e�aT=s�1
e�T=s�1

e�ðt
0�iT�aTÞ=s � eaT=s�1

eT=s�1
e�t0=s; off-time:

8
<

:

ð15Þ

The last term in the equations of solution 15 is a

transient term which vanishes for t?? . The solution then

converges to the QSS temperature evolution,

hQSSðtÞ
h�

¼ 1� eT=s�eaT=s

eT=s�1
e�ðt

0�iTÞ=s; on-time;
e�aT=s�1
e�T=s�1

e�ðt
0�iT�aTÞ=s; off-time:

(

ð16Þ

By subtracting its average value from hQSS(t), hav
* = ah*,

the ripple ~hðtÞ is obtained,

~hðtÞ ¼ hQSSðtÞ � hQSSðtÞh i
¼ hQSSðtÞ � h�av

ð17Þ

which has an average value of zero. ~hðtÞ ¼ 0 for t \ 0.

The mathematically more rigorous method for calcu-

lating the averaged temperature would be by applying the

averaging operator (Eq. 4) on Eq. 9, which yields,

hðtÞh i ¼ h�av �
s
T

hðt þ CÞ � hðt � T þ CÞð Þ ð18Þ

Using Eq. 15 the following averaged temperature is

obtained,

hðtÞh i ¼ h�av � h�
s
T
ðeaT=s � 1Þe�ðt0þCÞ=s ð19Þ

By varying C; hhðtÞi can be shifted in time. By choosing

for example

C ¼ wþ s ln
eaT=s � 1

aT=s

� �
ð20Þ

one obtains

hðtÞh i ¼ h�av � h�ave�t=s ð21Þ

A more pragmatic method with the same result would

involve calculating a DC case with the averaged heat

production applied. This yields

hðtÞ ¼ h�av � ðh
�
av � hinitÞe�t=s ð22Þ

where the shorter notation hðtÞ ¼ hhðtÞi is used. The latter

method is much easier to perform and hence was adopted

for the rest of this work. For time shifting between the

averaged temperature evolution hðtÞ and the pulsed tem-

perature evolution h(t), only the parameter w will be used.

A decaying contribution hdecay(t) is defined by stating

the following decomposition of the temperature evolution,

hðtÞ ¼ hðtÞ þ ~hðtÞ þ hdecayðtÞ ð23Þ

and can be calculated as

t/s

θ/
Κ

0 2 4 6 8 10

0

0.5

1

θ
θ
θ−θ
θdecay

_
_

t/s

θ/
Κ

0 2 4 6 8 10

0

0.5

1

θ

θ
θ~
_

(a) 0ψ = . (b) ψ ψ ∗= .

Fig. 1 Temperature evolutions

of the lumped capacity solution,

electrode initially at electrolyte

temperature (hinit = 0)
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hdecayðtÞ
h�

¼ a� eaT=s � 1

eT=s � 1
ew=s

� �
e�t=s ð24Þ

hdecay = 0 for t \ 0. By choosing w equal to the value

w� ¼ s ln a
eT=s � 1

eaT=s � 1

� �
ð25Þ

hdecay = 0 can be made exactly zero. In cases where T� s,

Eq. 25 simplifies to

w� � ð1� aÞT
2

ð26Þ

It is possible to combine the averaged boundary

conditions and pulses in one calculation. These

calculations will be called hybrid. Starting from t = 0,

the averaged heat sources are applied, and after time t = t*,

pulses are applied (possibly delayed by w). It can be shown

that the temperature evolution is composed of the averaged

component hðtÞ; and a ripple ~hðt � t�Þ and a decaying

component hdecay(t�t*) starting from the time t = t*:

hhybridðtÞ ¼ hðtÞ þ ~hðt � t�Þ þ hdecayðt � t�Þ ð27Þ

A particularly interesting case is when t*??. The

starting state at t = t* is then the averaged SS. This situation

is called the QSSSC. When performing the QSSSC it is

convenient to start the pulsed calculation from t = 0, while

applying the averaged SS as initial state. In this case, the

averaged temperature reduces to hðtÞ ¼ h�av :

hQSSSCðtÞ ¼ h�av þ ~hðtÞ þ hdecayðtÞ ð28Þ

To clarify the formulae obtained previously a few

examples are given. For these s = 1.5 s, T = 1 s, a = 0.1

and h* = 10 K are taken. The electrode is initially at

electrolyte temperature, hinit = 0. For w = 0 the

temperature evolution is given in Fig. 1a, and for w = w*

the temperature evolution is given in Fig. 1b. It can be seen

that in the case where w = 0, hðtÞ � hðtÞ ¼ ~hðtÞ þ hdecayðtÞ is
clearly composed of a ripple and a decaying contribution. In

the case where w = w*, the decaying contribution hdecay(t) is

zero, and hence the averaged temperature is equal to the

average of h(t), hðtÞ ¼ hhðtÞi:
In the next two examples, the QSSSC will be performed,

and hence the electrode is initially at the SS temperature of

the averaged case, hinit = h*
av. In the case where w = 0, there

is a decaying contribution present in h(t) before the QSS is

reached (Fig. 2a). In the case where w = w*, the QSS is

reached immediately (Fig. 2b), without a further transient.

The analysis in this work is performed on analytical

solutions, but the resulting conclusions are intended for

application on time stepping calculations. In the case of an

analytical solution, it is possible to calculate the QSS

straight away. However, during numerical calculations the

QSS needs to be obtained through time stepping, which

very often involves calculating through some history. In

this case, the QSSSC is a very useful tool to minimize or

even totally avoid this history (see Fig. 2b). Hence the QSS

can be computed with a minimum of timesteps.

4.1.2 Transient conduction in a 1D slab

In ECM, the flow velocities are typically relatively high,

giving rise to high convection coefficients h and hence high

Biot numbers. In such cases, the lumped capacity solution

is not valid. Transient conduction in a 1D slab is described

in the literature; if the slab is cooled by convection with a

constant convection coefficient h, the solution is [12]

h0 ¼
X1

n¼1

e�k̂2
nFo 2 sin k̂n

k̂n þ sin k̂n cos k̂n

cos k̂n
x

H

� �
ð29Þ

where Fo ¼ a0t
H2 and a0 ¼ k

qCp
: Starting from the side which

is insulated, the distance x is measured and h0 ¼ H�H�

Hinit�H� :

The coefficients k̂n are the successive roots of the

transcendental equation

cot k̂n ¼
k̂n

Bi
ð30Þ

For Fo [ 0.2 the series from Eq. 29 may be

approximated using only their first term

h0 � A1 cos k̂1

x

H

� �
e�k̂2

1 Fo ð31Þ

with A1 and k̂1 conveniently tabulated as a function of the

Biot number [12].

Duhamel’s theorem [13] relates the solution of problems

with time-dependent boundary conditions to the solution of

reduced problems with time-independent boundary condi-

tions (Eq. 29). The solution with pulsating heat production

at the surface of the electrode, and hence with the boundary

condition described in Eq. 12, is found to be

hðx;t0Þ
h�
¼

0; for t0�0
X1

k¼1

bkðxÞ 1�eT=sk�eaT=sk

eT=sk�1
e�ðt

0�iTÞ=sk

�

�eaT=sk�1

eT=sk�1
e�t0=sk

�
;

on-time

X1

k¼1

bkðxÞ
e�aT=sk�1

e�T=sk�1
e�ðt

0�iT�aTÞ=sk

�

�eaT=sk�1

eT=sk�1
e�t0=sk

�
;

off-time

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

ð32Þ

with
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bkðxÞ ¼
2 sin k̂k

k̂k þ sin k̂k cos k̂k

cos k̂k
x

H

� �
ð33Þ

and

sk ¼
H2

a0k̂2
k

ð34Þ

where k̂k are the successive roots of the transcendental Eq.

30. Note that

X1

k¼1

bkðxÞ ¼ 1 ð35Þ

A strong similarity can be noted between formulae 32

and 15. The temperature evolution expressions of

Sect. 4.1.1 for the lumped capacity solution can be

reused in this section for the 1D slab by taking the right

hand side of the formulae, placing
P1

k¼1

bkðxÞ in front of

them and replacing s by sk. This operation is valid for

Eqs. 15, 16 and 22; Eq. 17 remains valid.

The decompositions of the temperature evolutions are

now

hðx; tÞ ¼ hðx; tÞ þ ~hðx; tÞ þ hdecayðx; tÞ ð36Þ

hhybridðx; tÞ ¼ hðx; tÞ þ ~hðx; t � t�Þ þ hdecayðx; t � t�Þ ð37Þ

hQSSSCðx; tÞ ¼ h�av þ ~hðx; tÞ þ hdecayðx; tÞ ð38Þ

and the expression for hdecay(x,t) becomes

hdecayðx; tÞ
h�

¼
X1

k¼1

bkðxÞ a� eaT=sk � 1

eT=sk � 1
ew=sk

� �
e�t=sk ð39Þ

Expression 39 cannot be made exactly zero by the

choice of the one degree of freedom w. The component for

which k = 1, will be made zero. This component is not

necessarily the largest in amplitude, but it is always the

slowest one to damp out. The following value for w* is

obtained:

w� ¼ s1 ln a
eT=s1 � 1

eaT=s1 � 1

� �
ð40Þ

A perfect jump straight into the QSS as in Sect. 4.1.2 is

not possible here. This was to be expected, since the result

of the SS calculation is a body at uniform temperature, and

such a state is never encountered during the QSS. Hence, a

transient must occur to step into the QSS starting from the

SS.

The transient temperature evolution, together with the

QSSSC, is calculated for a case where x/H = 0, a = 0.1,

T0 = 0.3 and Bi = 10. By not delaying the pulses in time,

the results from Fig. 3 are obtained. By delaying the pulses

with w*, the results from Fig. 4 are obtained. It can be seen

that by delaying the pulses with w*, hdecay(x,t), can be

reduced strongly.

In the DC solution, it takes until about Fo = 0.2 for the

higher order components in the solution to pass. When

delaying the pulses with w*, these higher order components

are all still present in hdecay(x,t). The higher order com-

ponents in hdecay(x,t) are also a function of T. When T

becomes small, hdecay(x,t) will also become small more

quickly, which is very convenient because it keeps the

undesirable hdecay(x,t) under control.

The impact of the undesirable hdecay(x,t) will be quan-

tified from here. Only the QSSSC will be studied. The

other methods contain the same hdecay(x,t). The smaller

hdecay(x,t), the more accurate the QSSSC approximates the

real QSS. The difference between the QSSSC and the QSS,

will be quantified with the function E (in %), which is

defined as

Ej ¼
R

dj
hQSSSCðx; tÞ � hQSSðx; tÞj jdt

R
dj

hQSSðx; tÞdt
100

¼
R

dj
hdecayðx; tÞ
		 		dt
R

dj
hQSSðx; tÞdt

100

ð41Þ

where the integrals are calculated over dj, which is the jth

on-time. The integration domain is limited to the on-times,

ψ ∗=
t/s

θ/
Κ

0 2 4 6 8 10

0

0.5

1.5

1

t/s

θ/
Κ

0 2 4 6 8 10

0

0.5

1

(a) 0ψ = . (b) ψ .

θ

θ
θ~
_θ

θ
θ−θ
θdecay

_
_

Fig. 2 Temperature evolutions

of the lumped capacity solution,

electrode initially at averaged

SS temperature (hinit = hav
* )
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because this is the only interval of interest when per-

forming calculations for ECM. During the on-time of the

pulse, the actual shape change of the workpiece occurs,

which is the ultimate goal for simulations in ECM. The

states during the off-times are of no primary importance.

A condensed analysis of E will be given in the follow-

ing. Ej is mainly a function of four dimensionless

parameters: Bi, T 0 ¼ a0T
H2 ; a and x

H : Two additional param-

eters are the number of on-time j, and w. E1 is shown in

Fig. 5 for a = 0.1 and x/H = 0.99, with w = 0, and in

Fig. 6 for the same setup, but with w = w*.

One can distinguish three zones A, B and C in Fig. 5.

First, there is zone A for Bi \ 1, where E is function of

c = BiT0. In this zone, E is independent of x/H, and if

w = w* is applied, E becomes zero, which is in agreement

with the lumped capacity solution from Sect. 4.1.1. For

zone A, an analytical expression for Ej can be found,

Ej ¼
ð1�eac

ec�1
þ aÞð1� e�acÞe�ðj�1Þc

acþ ð1� 1�eac

1�ec Þðe�ac � 1Þ
ð42Þ

The maximum value E attains is about 53% (at BiT0 = 2.3

and a?0). The second zone, B, starts from Bi&1 to higher

Bi, where E is function of Bi2T0. The third zone, C, is

reached when Bi becomes large enough, and E is no longer

function of Bi. For x/H from 0 to about 0.5, the bell shaped

cross section become less high, and shifts slightly to

smaller T0. For such values of x/H, zone C starts already at

relatively low Bi, and connects almost immediately to zone

A. For x/H from about 0.5 to 1, the bell shaped cross

section becomes slightly higher again, and shifts strongly

to smaller T0. For such values of x/H, zone C is reached at

higher Bi numbers, and zone B stretches. For the depen-

dence of E on a, generally one can say, the smaller a, the

higher E.

Below the peak in Fig. 5, there is very strong accumu-

lation, and hence averaging is achieved automatically to a

certain degree. Above the peak, the effects of all the single

pulses are independent of each other and hence averaging

is actually not necessary. In both cases hdecay(x,t) becomes

very small.

The following general conclusions can be drawn from

the analysis of the E function. If a is limited to the interval

[0.1,1] the worst case values of E can be found in Table 1.

It can be seen that the worst case E1, encountered with

w = 0, is about 187%, which is far from acceptable. Cal-

culating until the second on-time during the QSSSC, we

could still encounter a maximum E2 of 25%, which is still
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Fig. 3 Temperature evolutions in 1D slab, w = 0 (x/H = 0, a = 0.1,

T0 = 0.3, Bi = 10)
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Fig. 4 Temperature evolutions in 1D slab, w = w* (x/H = 0, a = 0.1,

T0 = 0.3, Bi = 10)
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w = 0
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unacceptable. By delaying the pulses with w = w*, the

worst case values of E are drastically reduced. It can be

seen from Table 1 that the maximum error E1 is about 5%,

which is already acceptable, since in many cases the

uncertainties on the thermal parameters of the system are

also of this order. Calculating until the second on-time

gives a maximum E2 of about 0.7%, which is already quite

satisfactory. This is a worst case scenario, so most cases

perform even better than the values from Table 1.

4.2 Convection in the electrolyte

Because in ECM the convection velocity is usually very

high, convection is the main mode of transport in the

electrolyte. If only convection and bulk heating is consid-

ered and the problem is reduced to 1D, Eq. 1 simplifies to a

transport equation with a source

v
oh
ox
þ oh

ot
¼ Pbulk

qCp
¼ P�ðtÞ ð43Þ

The solution h(x,t) in the flow channel is the surface

tangent to the characteristic direction vector (v,1,P*(t)) in the

(x,t,h) space, according to [14]. P*(t) is defined in time as

P�ðtÞ ¼
0 for t0\0

P� for iT � t0\iT þ aT; on-time;
0 for iT þ aT � t0\ðiþ 1ÞT; off-time;

8
<

:

ð44Þ

with i = 0, 1, 2,... the number of the period. Analogously to

Sect. 4.1, t0 = t�w is used to provide the possibility of a

time delay w.

In addition to obeying Eq. 44, the initial condition

h(x,0) = 0 and the boundary condition h(0,t) = 0, the

solution in the flow channel is shown graphically in Fig. 7

(w = 0). The duty cycle was a = 0.3, which will be used for

the rest of this section.

The averaged temperature evolution hðx; tÞ is, analo-

gously to the conduction case, calculated by choosing the

source term P*(t) from Eq. 43 equal to the averaged

P�ðtÞh i ¼ aP� ð45Þ

In Fig. 8a, the pulsed case h(x,t) (light shade of grey)

and averaged case hðx; tÞ (transparent dark shade of grey)

are shown together. In zone A, there is accumulation of

heat in the channel. In zone B, the QSS is partially reached

in the flow channel, while in zone C the QSS is fully

reached.

The hybrid calculation and the QSSSC can also be

performed for this convective system, analogously to the

conduction case. In Fig. 9a, the QSS (light shade of grey)

and the QSSSC (transparent dark shade of grey) tempera-

ture evolutions are both shown. The QSSSC is achieved in

zone D, and in zone E the QSSSC becomes equal to the

QSS in the first part of the flow channel.

It can be seen in Fig. 8a that by using the averaged

temperature to approximate the pulsed temperature, there is

a permanent underestimation in zone A. The following

decomposition can be made for the transient,

hðx; tÞ ¼ hðx; tÞ þ ~hðx; tÞ þ f ðw; tÞ ð46Þ

with ~hðx; tÞ ¼ f ðw; tÞ ¼ 0 for t \ 0. In the case of a hybrid

calculation, it can be shown that

hhybridðx; tÞ ¼ hðx; tÞ þ ~hðx; t � t�Þ þ f ðw; t � t�Þ ð47Þ

In zone B and C another decomposition can be made for

the QSS,

hðx; tÞ ¼ hðxÞ þ ~h0ðx; tÞ ð48Þ

where hðxÞ is no longer a function of t, and where ~h0ðx; tÞ is

a different ripple than ~hðx; tÞ in Eqs. 46 and 47. The

average of the pulsed temperature, in zone B and C, is

hence automatically equal to the averaged SS temperature,

hhðx; tÞi ¼ hðxÞ: By using the QSSSC as an approximation

for the QSS, it can be seen in Fig. 9a that there was a
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Fig. 6 E1 as a function of Bi and T0, for a = 0.1 and x/H = 0.99 �
w = w*

Table 1 Worst case values of E (minimal value of a:0.1)

w E1 max E2 max

0 187% 25%

w* 5% 0.7%
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permanent overestimation in zone D. Here, the following

decomposition can be made,

hQSSSCðx; tÞ ¼ hðxÞ þ ~hðx; tÞ þ f ðw; tÞ ð49Þ

Equation 48 is also valid in zone D and E for the QSS.

In zone E, the QSSSC becomes equals to the QSS.

If the pulse train is delayed with an interval w = w*
c,

with

w�c ¼
ð1� aÞT

2
ð50Þ

f(w,t) becomes zero in Eqs. 46, 47 and 49. Hence, in zone

A, the average of the pulsed case becomes equal to the

averaged temperature, hhðx; tÞi ¼ hðx; tÞ (see Eq. 46), see

also Fig. 8b. Also, if w = w*
c, in zone D, the average of the

QSSSC becomes equal to the average of the QSS,

hhQSSSC(x ,t)i = hh(x,t)i (Eqs. 49 and 48), see also Fig. 9b.

Although the QSSSC is not exactly equal to the QSS, at

least their averages are. If the computational effort can be

made, calculations can be performed until the QSS (zone

E), for perfect results.

By taking slices from Figs. 8 and 9, a clearer picture can

be obtained. Different cases can be considered, which are

distinguished by the Strouhal number, defined as

St ¼ L

vT
ð51Þ

If St � 1, the characteristic direction would lie close to

the t-axis in Fig. 7. Slices from Fig. 8a, b would be similar

to what is shown in Fig. 10a, b, respectively.

Slices from Fig. 9a, b would be similar to what is shown

in Fig. 11a, b, respectively.

If St � 1, the characteristic direction would lie close to

the x-axis in Fig. 7. Slices from Fig. 8a, b would be similar

to what is shown in Fig. 12a, b, respectively. Zone A is

passed very quickly. Applying a time delay for the pulse

train has hardly any consequences in this case.

Slices from Fig. 9a, b would be similar to what is shown

in Fig. 13a, b, respectively. In the case with w = w*
c, the

QSSSC during the first on-time is exactly equal to the QSS,

hQSSSC(x,t) = h(x,t), while in the case with w = 0, there is a

difference. Note that for small St, the best way to calculate

the QSS, is actually by pulsing, starting from a state with

h(x,t) = 0. Hence the QSSSC is not the favoured method in

this case. However, it is possible that the QSSSC may be

applied for other reasons, e.g., conduction with large time

constants in the same system.

Fig. 7 Graphical solution of the temperature evolution, with con-

vection and bulk heating, as a function of time and space. The

characteristic direction is shown in dashed line

Fig. 8 Pulsed (light shade of

grey) and averaged (transparent

dark shade of grey) transient

temperature evolutions. The

quantities on the axes are the

same as in Fig. 7

Fig. 9 QSS (light shade of

grey) and QSSSC (transparent

dark shade of grey) temperature

evolutions. The quantities on

the axes are the same as in

Fig. 7

J Appl Electrochem (2007) 37:1345–1355 1353

123



5 Method

If the total machining time is large enough compared to the

time scales of the temperature evolution, it is a good

approximation to neglect the slow transients and say that

the system is always in QSS. This way, the QSSSC pro-

vides enough information to know the temperature

distribution during the whole machining time. For heat

transfer by conduction the following method can be

adopted. First the averaged SS is calculated. Afterwards, by

delaying the pulses with w*, the QSS can be calculated in

numerical calculations by time stepping through the delay

interval w*, and the first on-time. This should provide

satisfactory predictions of temperature during the on-time

(5% error worst case for the simplified model). If a higher

accuracy is needed, one has to time step also through the

off-time, and the second on-time. The temperature distri-

bution during the second on-time has then at worst 0.7%

deviation from the real QSS (for the simplified model). For

heat transfer by convection in the flow channel, the optimal

results are obtained if the pulses are shifted with w*
c. The

heat pulse shifting for convection and conduction have to

be taken the same, since in the more general system they

result from the same current pulsing. For T� s, w* & w*
c,

hence applying the pulse delay is generally beneficial to the

convection and the conduction case.

If the time scales of the temperature evolution are not

small enough compared to the total machining time, the

hybrid calculation can be used. This method is analogous

to the QSSSC above, except that the initial state before

applying the pulses is obtained by time stepping. Delaying

the pulse on-time w* with is advantageous to minimize

hdecay(x,t) and calculating more periods will provide more

accurate results. The worst case errors are not quantified in

this case, and will be higher than with the QSSSC. The

hybrid calculation works for the convection case as well

Fig. 10 Transient temperature

evolution for large St

Fig. 11 QSSSC temperature

evolution for large St

Fig. 12 Transient temperature

evolution for small St

Fig. 13 QSSSC temperature

evolution for small St
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(see Eq. 47), with the optimal pulse delay being w*
c. Note

that it is possible that the hybrid calculation is actually a

QSSSC for the convection in the flow channel, while this is

not the case for the conduction in the electrode, or vice

versa, because of the possibly very different time scales.

The method using the hybrid calculation provides one

period of data at a time, which is a downside compared to

the QSSSC. Another possible method is to calculate the

ripple ~hðx; tÞ (using a QSSSC or a hybrid calculation), and

adding this ripple ~hðx; tÞ to the averaged temperature

evolution ~hðx; tÞ: Neglecting hdecay(x,t), it is then possible

to reconstruct the temperature transient (see Eq. 36).

6 Conclusions

As a general method to solve thermal problems during

PECM, the full transient calculation is always an option.

However, this method can be computationally very

expensive, if not practically impossible, if the full detail of

the pulses has to be considered. When the full transient

calculation would be too expensive, simplified methods are

proposed: the QSSSC, the hybrid calculation and the

reconstruction of the temperature transient. These approx-

imate methods can be performed with a minimum of

computational effort.

Analytical solutions of simplified sub-problems were

analyzed in this work. The assumptions of the models used

to derive the analytical solutions are too strict for real life

Electrochemical Machining (ECM) conditions. Neverthe-

less, interesting conclusions can be made. Applying time

delays w to the pulses during the calculations strongly

improves the results of the approximate methods. Analyt-

ical expressions for optimal values of w are obtained in this

work.
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